Minor Course offered by BOS in Electronics Science for all UG Programs under Faculty of Science & Technology except B. Sc. (Electronic Science) and allied programs

or

for all UG programs under any Faculty other than Faculty of Science & Technology for SEM III ONLY

ES - 241 - MN: Data Communications (2024 Pattern)

Teaching Scheme:
TH: 02 Hours/Week

Credits
Continuous Evaluation: 15 Marks
End-Semester: 35 Marks

Course Objectives:

- To understand the fundamental concepts of data communication, networking standards, protocols and technologies.
- To be familiar with OSI and TCP/IP Models, signals, transmission impairments and performance
- To study different techniques for framing, error detection, access control and channelization

Course Outcomes: After successful completion of this course, learner will be able to-

- Define basic concepts in data communication and applications of Computer Network
- Compare and contrast OSI and TCP/IP models
- Determine Bandwidth and delays
- Demonstrate understanding and need of Data-link layer protocols

Course Contents Unit I Introduction to Data Communications 7Hrs

Data communications, Characteristics of Data Communication

Data Representation – Text, Numbers, Images, Audio, Video

Types of Data flow – Simplex, Half Duplex, Full Duplex

Computer Networks applications –Business Application, Home Application, Mobile User Broadcast and point-to-point networks

Network Topologies - Bus, Star, Ring, Mesh

Network Types- LAN, MAN, WAN, Wireless Networks, Home Networks, internetworks Protocols and standards – Definition of a Protocol, Protocol standards: De facto and De jure, RFC

Unit II	Network Models	7 Hrs			
TCP/IP Mo	OSI Model – layered architecture, peer-to-peer processes, encapsulation TCP/IP Model – layers and Protocol Suite Addressing-Physical, Logical, Port addresses, Specific addresses				
Unit III	Signals, Transmission & Performance	8 Hrs			

Analog and Digital data, Analog and Digital signals, Digital Signals-Bit rate, Bit length Baseband Transmission, Broadband Transmission

Transmission Impairments – Attenuation, Distortion and Noise

Data Rate Limits– Noiseless channel: Nyquist's bit rate, noisy channel: Shannon'slaw Performance of the Network Bandwidth, Throughput, Latency (Delay), Bandwidth – Delay Product, Jitters

Line Coding Characteristics, Line Coding Schemes–Unipolar -NRZ, Polar-NRZ-I, NRZ-L, RZ, Manchester and Differential Manchester, Problems

Transmission Modes, Parallel Transmission and Serial Transmission

— Asynchronous and Synchronous

Multiplexing, FDM and TDM

Switching-Circuit Switching, Message Switching and Packet Switching.

Unit IV Framing, Error Detection, Channelization 8 Hrs

Framing – Concept, Methods – Character Count, Flag bytes with Byte Stuffing, Starting & ending Flags with Bit Stuffing

Error detection codes – Hamming Distance, CRC

Elementary data link protocols - Simplex stop & wait protocol, Simplex protocol for noisy channel, PPP, HDLC

Sliding Window Protocols – 1-bit sliding window protocols, Pipelining – Go-Back N and Selective Repeat

Random Access Protocols - ALOHA– pure and slotted, CSMA-1- persistent, p-persistent and non-persistent CSMA/CD,CSMA/CA

Controlled Access - Reservation, Polling and Token Passing

Channelization – Definitions – FDMA, TDMA and CDMA

Text Books:

- 1. Data Communications and Networking by Behrouz Forouzan, Fifth Edition, ISBN 978-0-07-337622-6 McGraw Hill.
- 2. Computer Networks, ANDREW S. Tanenbaum, Fifth Edition, ISBN-13: 978-0-13-212695-3, Pearson

Minor Course offered by BOS in Electronics Science for all UG Programs under Faculty of Science & Technology except B. Sc. (Electronic Science) and allied programs

or

for all UG programs under any Faculty other than Faculty of Science & Technology for SEM III ONLY

ES – 242 - MNP: Data Communications Laboratory (2024 Pattern)

Teaching Scheme:

Oredits

Oredits

Credits

Continuous Evaluation: 15 Marks

End-Semester: 35 Marks

Course Objectives:

- To become familiar with various network devices
- To study protocols for serial and parallel communications and data-link layer

Course Outcomes: After successful completion of this course, learner will be able to -

- Use networking devises
- Implement Serial and Parallel communication protocols
- Implement Data link Layer protocols

Guidelines for Instructor's Manual

The instructor shall frame at least 14 assignments. Manual for the Instructor consisting of University syllabus, conduction and Assessment guidelines be developed

Guidelines for Student Journal

The laboratory assignments should be submitted by every student in the form of a journal consisting of Certificate, table of contents, and handwritten write-up for each assignment. Write-up shall include Title, Problem statement, date of completion etc. The students must submit program source codes with sample output of performed assignments in a soft form. A DVD with students programs should be maintained the by lab In-charge. One or two journals may be retained by the faculty with program prints.

Guidelines for Assessment

Continuous assessment of laboratory work is to be carried out by the instructor based on overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters such as timely completion, understanding, neatness etc. with appropriate weightage.

Assignment No	Topics for the Assignments	No. of Sessions
1	Using RJ-44 and RJ-11 connectors, crimping of RJ-45	01
	Connectors	
2	Study of network devices – NIC, cables, switches, Modem etc.	01
3	Implement Client-Server "Echo" program using Asynchronous	01
	communication	
4	Repeat Assignment 3 by varying parameters – Stop bits,	01
	Parity etc.	
5	Implement Client-Server "Echo" program using Synchronous	01

	communication	
6	Implement Simple stop and wait protocol	01
7	Implement 1-bit Sliding window protocol	01
8	Program to generate a series of random numbers using, say,	01
	a formula $N_{i+1} = (5 + N_i) \mod 19 - 1$	
9	Program to print a text file using parallel communication	01
10	Measuring upload and download speeds	01
11	Program to simulate error detection using Hamming Distance	01
12	Finding type of address (unicast, multicast or broadcast) from	01
	the given Ethernet destination address, say,	
	05:01:02:03:04:05	
13	Program to carry out given operations on given polynomials	01
Total Number of Sessions per Batch		

Minor Course offered by BOS in Electronics Science for all UG Programs under Faculty of Science & Technology except B. Sc. (Electronic Science) and allied programs

or

for all UG programs under any Faculty other than Faculty of Science & Technology for SEM IV ONLY

ES - 291 - MN: Communications Networks (2024 Pattern)

Teaching Scheme:
TH: 02 Hours/Week

Credits
Continuous Evaluation: 15 Marks
End-Semester: 35 Marks

Course Objectives:

- To study IPV4, IPV6 addresses, mapping and Routing
- To Become familiar with TCP and UDP Protocols
- To Understand various protocols at Application Layer

Course Outcomes: After successful completion of this course, learner will be able to-

- Compare and contrast different routing and switching techniques
- Differentiate between TCP and UDP
- Define architecture of various protocols used at Application Layer

Course Contents		
Unit I	Internet Protocol, Address mapping and Routing	8 Hrs

Review of basic concepts in Data Communication, Network models, Physical and Data Link Layers

IPv4 addresses: Address space, Notations, Classful and Classless addressing, NAT Internetworking – Need of Network layer, Internet as a Datagram and as a connectionless network

IPv4: Datagram, Fragmentation, checksum, options

IPv6 addresses: Structure, addrss space, packet format, Extension headers Address mapping – ARP, RARP, BBOTP and DHCP

ICMP – Types and formats of messages, Error reporting, Introduction to IGMP Direct and indirect delivery, Forwarding techniques, process and routing table Unicast and Multicast Routing protocols

Unit II UDP and TCP 8 Hrs

- 6.1. Process-to-Process Delivery- Client-server, Multiplexing and De-multiplexing,
 Connectionless Vs. Connection oriented service, Reliable Vs. unreliable service
 6.2. User Datagram Protocol (UDP) Ports, User Datagram, Checksum, UDP operations,
 Use of UDP
- 6.3. Transmission Control Protocol (TCP) TCP Services, TCP Features, Segment, TCP Connection, Flow Control, Error Control, Congestion Control

Unit III DNS, Remote Login, Email and File Transfer 7 Hrs

Domain Name System (DNS) - Distribution of Name Space, DNS in the Internet, Resolutions, DNS Messages, Header, Records, Registers, DDNS, Encapsulation Remote Login – TELNET

E-MAIL - Architecture, User Agent, Message Transfer Agent - SMTP, POP and IMAP, Web Based Mail

FTP, Anonymous FTP

WWW and HTTP

7 Hrs

WWW – Architecture, Client, Server, URL, Cookies, WEB Documents – Static, Dynamic and Active documents

HTTP - HTTP Transaction, Persistent Vs. Nonpersistent connection, Proxy Server Introduction to Simple Network Management – Management components, structure of Management information, MIB, Security

Reference Books:

- 1. Data Communications and Networking by Behrouz Forouzan, Fifth Edition, ISBN 978-0-07-337622-6 McGraw Hill.
- 2. Computer Networks, ANDREW S. Tanenbaum, Fifth Edition, ISBN-13: 978-0-13-212695-3, Pearson

Minor Course offered by BOS in Electronics Science for all UG Programs under Faculty of Science & Technology except B. Sc. (Electronic Science) and allied programs

or

for all UG programs under any Faculty other than Faculty of Science & Technology for SEM IV ONLY

ES - 292 - MNP: Communications Networks Laboratory (2024 Pattern)

Teaching Scheme:

Credits

O2

Examination Scheme:

Continuous Evaluation: 15 Marks

End-Semester: 35 Marks

Pre-requisite Course: BCA 111

Course Objectives:

- To study network commands
- To understand network and transport layers
- To Understand useful protocols at Application layer

Course Outcomes: After successful completion of this course, learner will be able to -

- Use Networking commands
- Implement Socket programming using TCP and UDP
- Apply protocols at Application layer

Guidelines for Instructor's Manual

The instructor shall frame at least 14 assignments. Manual for the Instructor consisting of University syllabus, conduction and Assessment guidelines be developed

Guidelines for Student Journal

The laboratory assignments should be submitted by every student in the form of a journal consisting of Certificate, table of contents, and handwritten write-up for each assignment. Write-up shall include Title, Problem statement, date of completion etc. The students must submit program source codes with sample output of performed assignments in a soft form. A DVD with students programs should be maintained the by lab In-charge. One or two journals may be retained by the faculty with program prints.

Guidelines for Assessment

Continuous assessment of laboratory work is to be carried out by the instructor based on overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters such as timely completion, understanding, neatness etc. with appropriate weightage.

Assignment	Topics for the Assignments	No. of
No		Sessions
1	Using Networking commands – ping, hostname, traceroute,	01
	netstat, ifconfig, who, nmap, nslookup etc	
2	Study of LAN Environment – IP, MAC addresses, DHCP	01
	Server	
3	To convert the given IP addresses from binary to dotted-	01
	decimal notion	
4	To convert the given IP addresses from dotted-decimal notion	01
	to binary notation	
5	To find netid and hosted of the given IP addresses	01
6	To find class of the given IP addresses	01
7	UDP Based Client-Server "Echo" application using socket	01
	programming	
8	TCP Based Client-Server "Echo" application using socket	01
	programming	
9	Use and study important "Setting options" in GMAIL	01
10	To back up email messages in a gmail account	01
11	Explore POP and IMAP in Gmail	01
12	Use and study of FTP Command, Anonymous FTP	01
13	Using HTTP protocol and understand standard ports	01
14	Using TELNET	01
Total Number of Sessions per Batch		